Emergent Mind

Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence

(2007.11612)
Published Jul 22, 2020 in stat.ML , cs.LG , math.PR , and stat.CO

Abstract

We study sampling from a target distribution $\nu* = e{-f}$ using the unadjusted Langevin Monte Carlo (LMC) algorithm when the potential $f$ satisfies a strong dissipativity condition and it is first-order smooth with a Lipschitz gradient. We prove that, initialized with a Gaussian random vector that has sufficiently small variance, iterating the LMC algorithm for $\widetilde{\mathcal{O}}(\lambda2 d\epsilon{-1})$ steps is sufficient to reach $\epsilon$-neighborhood of the target in both Chi-squared and Renyi divergence, where $\lambda$ is the logarithmic Sobolev constant of $\nu*$. Our results do not require warm-start to deal with the exponential dimension dependency in Chi-squared divergence at initialization. In particular, for strongly convex and first-order smooth potentials, we show that the LMC algorithm achieves the rate estimate $\widetilde{\mathcal{O}}(d\epsilon{-1})$ which improves the previously known rates in both of these metrics, under the same assumptions. Translating this rate to other metrics, our results also recover the state-of-the-art rate estimates in KL divergence, total variation and $2$-Wasserstein distance in the same setup. Finally, as we rely on the logarithmic Sobolev inequality, our framework covers a range of non-convex potentials that are first-order smooth and exhibit strong convexity outside of a compact region.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.