Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing (2007.11604v1)

Published 22 Jul 2020 in cs.LG, cs.DL, and cs.IR

Abstract: The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world in many ways, from cities under lockdown to new social experiences. Although in most cases COVID-19 results in mild illness, it has drawn global attention due to the extremely contagious nature of SARS-CoV-2. Governments and healthcare professionals, along with people and society as a whole, have taken any measures to break the chain of transition and flatten the epidemic curve. In this study, we used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research by identifying the latent topics and analyzing the temporal evolution of the extracted research themes, publications similarity, and sentiments, within the time-frame of January- May 2020. Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues and the latter focusing more on intelligent systems/tools to predict/diagnose COVID-19. The special attention of the research community to the high-risk groups and people with complications was also confirmed.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.