Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Element Calculation of Photonic Band Structures for Frequency Dependent Materials (2007.11540v1)

Published 20 Jul 2020 in math.NA and cs.NA

Abstract: We consider the calculation of the band structure of frequency dependent photonic crystals. The associated eigenvalue problem is nonlinear and it is challenging to develop effective convergent numerical methods. In this paper, the band structure problem is formulated as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. Lagrange finite elements are used to discretize the operator function. Then the convergence of the eigenvalues is proved using the abstract approximation theory for holomorphic operator functions. A spectral indicator method is developed to practically compute the eigenvalues. Numerical examples are presented to validate the theory and show the effectiveness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wenqiang Xiao (2 papers)
  2. Bo Gong (13 papers)
  3. Jiguang Sun (33 papers)
  4. Zhimin Zhang (97 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.