Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Clustering using Eigenspectrum Shape Based Nystrom Sampling (2007.11416v1)

Published 21 Jul 2020 in cs.LG and stat.ML

Abstract: Spectral clustering has shown a superior performance in analyzing the cluster structure. However, its computational complexity limits its application in analyzing large-scale data. To address this problem, many low-rank matrix approximating algorithms are proposed, including the Nystrom method - an approach with proven approximate error bounds. There are several algorithms that provide recipes to construct Nystrom approximations with variable accuracies and computing times. This paper proposes a scalable Nystrom-based clustering algorithm with a new sampling procedure, Centroid Minimum Sum of Squared Similarities (CMS3), and a heuristic on when to use it. Our heuristic depends on the eigen spectrum shape of the dataset, and yields competitive low-rank approximations in test datasets compared to the other state-of-the-art methods

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.