Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spectral Clustering using Eigenspectrum Shape Based Nystrom Sampling (2007.11416v1)

Published 21 Jul 2020 in cs.LG and stat.ML

Abstract: Spectral clustering has shown a superior performance in analyzing the cluster structure. However, its computational complexity limits its application in analyzing large-scale data. To address this problem, many low-rank matrix approximating algorithms are proposed, including the Nystrom method - an approach with proven approximate error bounds. There are several algorithms that provide recipes to construct Nystrom approximations with variable accuracies and computing times. This paper proposes a scalable Nystrom-based clustering algorithm with a new sampling procedure, Centroid Minimum Sum of Squared Similarities (CMS3), and a heuristic on when to use it. Our heuristic depends on the eigen spectrum shape of the dataset, and yields competitive low-rank approximations in test datasets compared to the other state-of-the-art methods

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)