Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and Learning (2007.11202v2)

Published 22 Jul 2020 in cs.LG and stat.ML

Abstract: Graph Neural Networks (GNNs) have recently caught great attention and achieved significant progress in graph-level applications. In this paper, we propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies. The underlying method takes graphs in different structures as input and assembles consistent graph representations for readout layers, which then accomplishes label prediction. To achieve this, the multiresolution graph representations are first constructed and fed into graph convolutional layers for processing. The hierarchical graph pooling layers are then involved to downsample graph resolution while simultaneously remove redundancy within graph signals. The whole workflow could be formed with a multi-level graph analysis, which not only helps embed the intrinsic topological information of each graph into the GNN, but also supports fast computation of forward and adjoint graph transforms. We show by extensive experiments that the proposed framework obtains notable accuracy gains on graph classification and regression tasks with performance stability. The proposed MathNet outperforms various existing GNN models, especially on big data sets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.