Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Time-aware Graph Embedding: A temporal smoothness and task-oriented approach (2007.11164v1)

Published 22 Jul 2020 in cs.LG and stat.ML

Abstract: Knowledge graph embedding, which aims to learn the low-dimensional representations of entities and relationships, has attracted considerable research efforts recently. However, most knowledge graph embedding methods focus on the structural relationships in fixed triples while ignoring the temporal information. Currently, existing time-aware graph embedding methods only focus on the factual plausibility, while ignoring the temporal smoothness which models the interactions between a fact and its contexts, and thus can capture fine-granularity temporal relationships. This leads to the limited performance of embedding related applications. To solve this problem, this paper presents a Robustly Time-aware Graph Embedding (RTGE) method by incorporating temporal smoothness. Two major innovations of our paper are presented here. At first, RTGE integrates a measure of temporal smoothness in the learning process of the time-aware graph embedding. Via the proposed additional smoothing factor, RTGE can preserve both structural information and evolutionary patterns of a given graph. Secondly, RTGE provides a general task-oriented negative sampling strategy associated with temporally-aware information, which further improves the adaptive ability of the proposed algorithm and plays an essential role in obtaining superior performance in various tasks. Extensive experiments conducted on multiple benchmark tasks show that RTGE can increase performance in entity/relationship/temporal scoping prediction tasks.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.