Papers
Topics
Authors
Recent
2000 character limit reached

Estimating crop yields with remote sensing and deep learning (2007.10882v1)

Published 21 Jul 2020 in stat.AP, cs.CY, and cs.LG

Abstract: Increasing the accuracy of crop yield estimates may allow improvements in the whole crop production chain, allowing farmers to better plan for harvest, and for insurers to better understand risks of production, to name a few advantages. To perform their predictions, most current machine learning models use NDVI data, which can be hard to use, due to the presence of clouds and their shadows in acquired images, and due to the absence of reliable crop masks for large areas, especially in developing countries. In this paper, we present a deep learning model able to perform pre-season and in-season predictions for five different crops. Our model uses crop calendars, easy-to-obtain remote sensing data and weather forecast information to provide accurate yield estimates.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.