What Programs Want: Automatic Inference of Input Data Specifications (2007.10688v1)
Abstract: Nowadays, as machine-learned software quickly permeates our society, we are becoming increasingly vulnerable to programming errors in the data pre-processing or training software, as well as errors in the data itself. In this paper, we propose a static shape analysis framework for input data of data-processing programs. Our analysis automatically infers necessary conditions on the structure and values of the data read by a data-processing program. Our framework builds on a family of underlying abstract domains, extended to indirectly reason about the input data rather than simply reasoning about the program variables. The choice of these abstract domain is a parameter of the analysis. We describe various instances built from existing abstract domains. The proposed approach is implemented in an open-source static analyzer for Python programs. We demonstrate its potential on a number of representative examples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.