Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

What Programs Want: Automatic Inference of Input Data Specifications (2007.10688v1)

Published 21 Jul 2020 in cs.PL and cs.LO

Abstract: Nowadays, as machine-learned software quickly permeates our society, we are becoming increasingly vulnerable to programming errors in the data pre-processing or training software, as well as errors in the data itself. In this paper, we propose a static shape analysis framework for input data of data-processing programs. Our analysis automatically infers necessary conditions on the structure and values of the data read by a data-processing program. Our framework builds on a family of underlying abstract domains, extended to indirectly reason about the input data rather than simply reasoning about the program variables. The choice of these abstract domain is a parameter of the analysis. We describe various instances built from existing abstract domains. The proposed approach is implemented in an open-source static analyzer for Python programs. We demonstrate its potential on a number of representative examples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.