Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Associative Memory Network with Memory Refreshing Loss (2007.10637v3)

Published 21 Jul 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Despite recent progress in memory augmented neural network (MANN) research, associative memory networks with a single external memory still show limited performance on complex relational reasoning tasks. Especially the content-based addressable memory networks often fail to encode input data into rich enough representation for relational reasoning and this limits the relation modeling performance of MANN for long temporal sequence data. To address these problems, here we introduce a novel Distributed Associative Memory architecture (DAM) with Memory Refreshing Loss (MRL) which enhances the relation reasoning performance of MANN. Inspired by how the human brain works, our framework encodes data with distributed representation across multiple memory blocks and repeatedly refreshes the contents for enhanced memorization similar to the rehearsal process of the brain. For this procedure, we replace a single external memory with a set of multiple smaller associative memory blocks and update these sub-memory blocks simultaneously and independently for the distributed representation of input data. Moreover, we propose MRL which assists a task's target objective while learning relational information existing in data. MRL enables MANN to reinforce an association between input data and task objective by reproducing stochastically sampled input data from stored memory contents. With this procedure, MANN further enriches the stored representations with relational information. In experiments, we apply our approaches to Differential Neural Computer (DNC), which is one of the representative content-based addressing memory models and achieves the state-of-the-art performance on both memorization and relational reasoning tasks.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.