Papers
Topics
Authors
Recent
2000 character limit reached

Minimax Policy for Heavy-tailed Bandits (2007.10493v2)

Published 20 Jul 2020 in stat.ML and cs.LG

Abstract: We study the stochastic Multi-Armed Bandit (MAB) problem under worst-case regret and heavy-tailed reward distribution. We modify the minimax policy MOSS for the sub-Gaussian reward distribution by using saturated empirical mean to design a new algorithm called Robust MOSS. We show that if the moment of order $1+\epsilon$ for the reward distribution exists, then the refined strategy has a worst-case regret matching the lower bound while maintaining a distribution-dependent logarithm regret.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.