Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generative Hierarchical Features from Synthesizing Images (2007.10379v2)

Published 20 Jul 2020 in cs.CV

Abstract: Generative Adversarial Networks (GANs) have recently advanced image synthesis by learning the underlying distribution of the observed data. However, how the features learned from solving the task of image generation are applicable to other vision tasks remains seldom explored. In this work, we show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications. Specifically, we consider the pre-trained StyleGAN generator as a learned loss function and utilize its layer-wise representation to train a novel hierarchical encoder. The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks, including image editing, image harmonization, image classification, face verification, landmark detection, and layout prediction. Extensive qualitative and quantitative experimental results demonstrate the appealing performance of GH-Feat.

Citations (114)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.