Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Coronavirus Knowledge Graph: A Case Study (2007.10287v1)

Published 4 Jul 2020 in cs.AI and cs.CL

Abstract: The emergence of the novel COVID-19 pandemic has had a significant impact on global healthcare and the economy over the past few months. The virus's rapid widespread has led to a proliferation in biomedical research addressing the pandemic and its related topics. One of the essential Knowledge Discovery tools that could help the biomedical research community understand and eventually find a cure for COVID-19 are Knowledge Graphs. The CORD-19 dataset is a collection of publicly available full-text research articles that have been recently published on COVID-19 and coronavirus topics. Here, we use several Machine Learning, Deep Learning, and Knowledge Graph construction and mining techniques to formalize and extract insights from the PubMed dataset and the CORD-19 dataset to identify COVID-19 related experts and bio-entities. Besides, we suggest possible techniques to predict related diseases, drug candidates, gene, gene mutations, and related compounds as part of a systematic effort to apply Knowledge Discovery methods to help biomedical researchers tackle the pandemic.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.