Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Orbits of Automaton Semigroups and Groups (2007.10273v1)

Published 16 Jul 2020 in cs.FL and math.GR

Abstract: We investigate the orbits of automaton semigroups and groups to obtain algorithmic and structural results, both for general automata but also for some special subclasses. First, we show that a more general version of the finiteness problem for automaton groups is undecidable. This problem is equivalent to the finiteness problem for left principal ideals in automaton semigroups generated by complete and reversible automata. Then, we look at $\omega$-word (i.e. right infinite words) with a finite orbit. We show that every automaton yielding an $\omega$-word with a finite orbit already yields an ultimately periodic one, which is not periodic in general, however. On the algorithmic side, we observe that it is not possible to decide whether a given periodic $\omega$-word has an infinite orbit and that we cannot check whether a given reversible and complete automaton admits an $\omega$-word with a finite orbit, a reciprocal problem to the finiteness problem for automaton semigroups in the reversible case. Finally, we look at automaton groups generated by reversible but not bi-reversible automata and show that many words have infinite orbits under the action of such automata.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.