Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-level Training and Bayesian Optimization for Economical Hyperparameter Optimization (2007.09953v1)

Published 20 Jul 2020 in stat.ML and cs.LG

Abstract: Hyperparameters play a critical role in the performances of many machine learning methods. Determining their best settings or Hyperparameter Optimization (HPO) faces difficulties presented by the large number of hyperparameters as well as the excessive training time. In this paper, we develop an effective approach to reducing the total amount of required training time for HPO. In the initialization, the nested Latin hypercube design is used to select hyperparameter configurations for two types of training, which are, respectively, heavy training and light training. We propose a truncated additive Gaussian process model to calibrate approximate performance measurements generated by light training, using accurate performance measurements generated by heavy training. Based on the model, a sequential model-based algorithm is developed to generate the performance profile of the configuration space as well as find optimal ones. Our proposed approach demonstrates competitive performance when applied to optimize synthetic examples, support vector machines, fully connected networks and convolutional neural networks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.