Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Wide Boosting (2007.09855v5)

Published 20 Jul 2020 in cs.LG and stat.ML

Abstract: Gradient Boosting (GB) is a popular methodology used to solve prediction problems by minimizing a differentiable loss function, $L$. GB performs very well on tabular ML problems; however, as a pure ML solver it lacks the ability to fit models with probabilistic but correlated multi-dimensional outputs, for example, multiple correlated Bernoulli outputs. GB also does not form intermediate abstract data embeddings, one property of Deep Learning that gives greater flexibility and performance on other types of problems. This paper presents a simple adjustment to GB motivated in part by artificial neural networks. Specifically, our adjustment inserts a matrix multiplication between the output of a GB model and the loss, $L$. This allows the output of a GB model to have increased dimension prior to being fed into the loss and is thus ``wider'' than standard GB implementations. We call our method Wide Boosting (WB) and show that WB outperforms GB on mult-dimesional output tasks and that the embeddings generated by WB contain are more useful in downstream prediction tasks than GB output predictions alone.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube