Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Object-Aware Centroid Voting for Monocular 3D Object Detection (2007.09836v1)

Published 20 Jul 2020 in cs.CV

Abstract: Monocular 3D object detection aims to detect objects in a 3D physical world from a single camera. However, recent approaches either rely on expensive LiDAR devices, or resort to dense pixel-wise depth estimation that causes prohibitive computational cost. In this paper, we propose an end-to-end trainable monocular 3D object detector without learning the dense depth. Specifically, the grid coordinates of a 2D box are first projected back to 3D space with the pinhole model as 3D centroids proposals. Then, a novel object-aware voting approach is introduced, which considers both the region-wise appearance attention and the geometric projection distribution, to vote the 3D centroid proposals for 3D object localization. With the late fusion and the predicted 3D orientation and dimension, the 3D bounding boxes of objects can be detected from a single RGB image. The method is straightforward yet significantly superior to other monocular-based methods. Extensive experimental results on the challenging KITTI benchmark validate the effectiveness of the proposed method.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)