Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic tensor approximation of high-dimensional nonlinear PDEs (2007.09538v1)

Published 19 Jul 2020 in math.NA, cs.NA, and math.FA

Abstract: We present a new method based on functional tensor decomposition and dynamic tensor approximation to compute the solution of a high-dimensional time-dependent nonlinear partial differential equation (PDE). The idea of dynamic approximation is to project the time derivative of the PDE solution onto the tangent space of a low-rank functional tensor manifold at each time. Such a projection can be computed by minimizing a convex energy functional over the tangent space. This minimization problem yields the unique optimal velocity vector that allows us to integrate the PDE forward in time on a tensor manifold of constant rank. In the case of initial/boundary value problems defined in real separable Hilbert spaces, this procedure yields evolution equations for the tensor modes in the form of a coupled system of one-dimensional time-dependent PDEs. We apply the dynamic tensor approximation to a four-dimensional Fokker-Planck equation with non-constant drift and diffusion coefficients, and demonstrate its accuracy in predicting relaxation to statistical equilibrium.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.