Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Distributionally Robust Approach to Fair Classification (2007.09530v1)

Published 18 Jul 2020 in cs.LG and stat.ML

Abstract: We propose a distributionally robust logistic regression model with an unfairness penalty that prevents discrimination with respect to sensitive attributes such as gender or ethnicity. This model is equivalent to a tractable convex optimization problem if a Wasserstein ball centered at the empirical distribution on the training data is used to model distributional uncertainty and if a new convex unfairness measure is used to incentivize equalized opportunities. We demonstrate that the resulting classifier improves fairness at a marginal loss of predictive accuracy on both synthetic and real datasets. We also derive linear programming-based confidence bounds on the level of unfairness of any pre-trained classifier by leveraging techniques from optimal uncertainty quantification over Wasserstein balls.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube