Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CTC-Segmentation of Large Corpora for German End-to-end Speech Recognition (2007.09127v2)

Published 17 Jul 2020 in eess.AS

Abstract: Recent end-to-end Automatic Speech Recognition (ASR) systems demonstrated the ability to outperform conventional hybrid DNN/ HMM ASR. Aside from architectural improvements in those systems, those models grew in terms of depth, parameters and model capacity. However, these models also require more training data to achieve comparable performance. In this work, we combine freely available corpora for German speech recognition, including yet unlabeled speech data, to a big dataset of over $1700$h of speech data. For data preparation, we propose a two-stage approach that uses an ASR model pre-trained with Connectionist Temporal Classification (CTC) to boot-strap more training data from unsegmented or unlabeled training data. Utterances are then extracted from label probabilities obtained from the network trained with CTC to determine segment alignments. With this training data, we trained a hybrid CTC/attention Transformer model that achieves $12.8\%$ WER on the Tuda-DE test set, surpassing the previous baseline of $14.4\%$ of conventional hybrid DNN/HMM ASR.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com