Region-based Non-local Operation for Video Classification (2007.09033v5)
Abstract: Convolutional Neural Networks (CNNs) model long-range dependencies by deeply stacking convolution operations with small window sizes, which makes the optimizations difficult. This paper presents region-based non-local (RNL) operations as a family of self-attention mechanisms, which can directly capture long-range dependencies without using a deep stack of local operations. Given an intermediate feature map, our method recalibrates the feature at a position by aggregating the information from the neighboring regions of all positions. By combining a channel attention module with the proposed RNL, we design an attention chain, which can be integrated into the off-the-shelf CNNs for end-to-end training. We evaluate our method on two video classification benchmarks. The experimental results of our method outperform other attention mechanisms, and we achieve state-of-the-art performance on the Something-Something V1 dataset.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.