Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SummPip: Unsupervised Multi-Document Summarization with Sentence Graph Compression (2007.08954v2)

Published 17 Jul 2020 in cs.CL, cs.IR, and cs.LG

Abstract: Obtaining training data for multi-document summarization (MDS) is time consuming and resource-intensive, so recent neural models can only be trained for limited domains. In this paper, we propose SummPip: an unsupervised method for multi-document summarization, in which we convert the original documents to a sentence graph, taking both linguistic and deep representation into account, then apply spectral clustering to obtain multiple clusters of sentences, and finally compress each cluster to generate the final summary. Experiments on Multi-News and DUC-2004 datasets show that our method is competitive to previous unsupervised methods and is even comparable to the neural supervised approaches. In addition, human evaluation shows our system produces consistent and complete summaries compared to human written ones.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.