Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Provable Near-Optimal Low-Multilinear-Rank Tensor Recovery (2007.08904v2)

Published 17 Jul 2020 in math.NA and cs.NA

Abstract: We consider the problem of recovering a low-multilinear-rank tensor from a small amount of linear measurements. We show that the Riemannian gradient algorithm initialized by one step of iterative hard thresholding can reconstruct an order-$d$ tensor of size $n\times\ldots\times n$ and multilinear rank $(r,\ldots,r)$ with high probability from only $O(nr2 + r{d+1})$ measurements, assuming $d$ is a constant. This sampling complexity is optimal in $n$, compared to existing results whose sampling complexities are all unnecessarily large in $n$. The analysis relies on the tensor restricted isometry property (TRIP) and the geometry of the manifold of all tensors with a fixed multilinear rank. High computational efficiency of our algorithm is also achieved by doing higher order singular value decomposition on intermediate small tensors of size only $2r\times \ldots\times 2r$ rather than on tensors of size $n\times \ldots\times n$ as usual.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.