Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm (2007.08824v2)

Published 17 Jul 2020 in math.NA and cs.NA

Abstract: We propose a goal-oriented mesh-adaptive algorithm for a finite element method stabilized via residual minimization on dual discontinuous-Galerkin norms. By solving a saddle-point problem, this residual minimization delivers a stable continuous approximation to the solution on each mesh instance and a residual projection onto a broken polynomial space, which is a robust error estimator to minimize the discrete energy norm via automatic mesh refinement. In this work, we propose and analyze a goal-oriented adaptive algorithm for this stable residual minimization. We solve the primal and adjoint problems considering the same saddle-point formulation and different right-hand sides. By solving a third stable problem, we obtain two efficient error estimates to guide goal-oriented adaptivity. We illustrate the performance of this goal-oriented adaptive strategy on advection-diffusion-reaction problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.