Emergent Mind

Deep ReLU neural networks in high-dimensional approximation

(2007.08729)
Published Jul 17, 2020 in math.NA and cs.NA

Abstract

We study the computation complexity of deep ReLU (Rectified Linear Unit) neural networks for the approximation of functions from the H\"older-Zygmund space of mixed smoothness defined on the $d$-dimensional unit cube when the dimension $d$ may be very large. The approximation error is measured in the norm of isotropic Sobolev space. For every function $f$ from the H\"older-Zygmund space of mixed smoothness, we explicitly construct a deep ReLU neural network having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, and prove tight dimension-dependent upper and lower bounds of the computation complexity of this approximation, characterized as the size and the depth of this deep ReLU neural network, explicitly in $d$ and $\varepsilon$. The proof of these results are in particular, relied on the approximation by sparse-grid sampling recovery based on the Faber series.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.