Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deep ReLU neural networks in high-dimensional approximation (2007.08729v2)

Published 17 Jul 2020 in math.NA and cs.NA

Abstract: We study the computation complexity of deep ReLU (Rectified Linear Unit) neural networks for the approximation of functions from the H\"older-Zygmund space of mixed smoothness defined on the $d$-dimensional unit cube when the dimension $d$ may be very large. The approximation error is measured in the norm of isotropic Sobolev space. For every function $f$ from the H\"older-Zygmund space of mixed smoothness, we explicitly construct a deep ReLU neural network having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, and prove tight dimension-dependent upper and lower bounds of the computation complexity of this approximation, characterized as the size and the depth of this deep ReLU neural network, explicitly in $d$ and $\varepsilon$. The proof of these results are in particular, relied on the approximation by sparse-grid sampling recovery based on the Faber series.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.