Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BRP-NAS: Prediction-based NAS using GCNs (2007.08668v4)

Published 16 Jul 2020 in cs.LG, eess.SP, and stat.ML

Abstract: Neural architecture search (NAS) enables researchers to automatically explore broad design spaces in order to improve efficiency of neural networks. This efficiency is especially important in the case of on-device deployment, where improvements in accuracy should be balanced out with computational demands of a model. In practice, performance metrics of model are computationally expensive to obtain. Previous work uses a proxy (e.g., number of operations) or a layer-wise measurement of neural network layers to estimate end-to-end hardware performance but the imprecise prediction diminishes the quality of NAS. To address this problem, we propose BRP-NAS, an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN). What is more, we investigate prediction quality on different metrics and show that sample efficiency of the predictor-based NAS can be improved by considering binary relations of models and an iterative data selection strategy. We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201, and that our predictor can consistently learn to extract useful features from the DARTS search space, improving upon the second-order baseline. Finally, to raise awareness of the fact that accurate latency estimation is not a trivial task, we release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.

Citations (185)

Summary

We haven't generated a summary for this paper yet.