Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

FADACS: A Few-shot Adversarial Domain Adaptation Architecture for Context-Aware Parking Availability Sensing (2007.08551v2)

Published 13 Jul 2020 in cs.LG, cs.CV, cs.SY, eess.SP, and eess.SY

Abstract: Existing research on parking availability sensing mainly relies on extensive contextual and historical information. In practice, the availability of such information is a challenge as it requires continuous collection of sensory signals. In this study, we design an end-to-end transfer learning framework for parking availability sensing to predict parking occupancy in areas in which the parking data is insufficient to feed into data-hungry models. This framework overcomes two main challenges: 1) many real-world cases cannot provide enough data for most existing data-driven models, and 2) it is difficult to merge sensor data and heterogeneous contextual information due to the differing urban fabric and spatial characteristics. Our work adopts a widely-used concept, adversarial domain adaptation, to predict the parking occupancy in an area without abundant sensor data by leveraging data from other areas with similar features. In this paper, we utilise more than 35 million parking data records from sensors placed in two different cities, one a city centre and the other a coastal tourist town. We also utilise heterogeneous spatio-temporal contextual information from external resources, including weather and points of interest. We quantify the strength of our proposed framework in different cases and compare it to the existing data-driven approaches. The results show that the proposed framework is comparable to existing state-of-the-art methods and also provide some valuable insights on parking availability prediction.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube