Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Iterative Solver for the Optimal Control of Time-Dependent PDEs with Crank-Nicolson Discretization in Time (2007.08410v1)

Published 16 Jul 2020 in math.NA, cs.NA, and math.OC

Abstract: In this article, we derive a new, fast, and robust preconditioned iterative solution strategy for the all-at-once solution of optimal control problems with time-dependent PDEs as constraints, including the heat equation and the non-steady convection--diffusion equation. After applying an optimize-then-discretize approach, one is faced with continuous first-order optimality conditions consisting of a coupled system of PDEs. As opposed to most work in preconditioning the resulting discretized systems, where a (first-order accurate) backward Euler method is used for the discretization of the time derivative, we employ a (second-order accurate) Crank--Nicolson method in time. We apply a carefully tailored invertible transformation for symmetrizing the matrix, and then derive an optimal preconditioner for the saddle-point system obtained. The key components of this preconditioner are an accurate mass matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to apply this latter approximation---these are constructed using our work in transforming the matrix system. We prove the optimality of the approximation of the Schur complement through bounds on the eigenvalues, and test our solver against a widely-used preconditioner for the linear system arising from a backward Euler discretization. These demonstrate the effectiveness and robustness of our solver with respect to mesh-sizes, regularization parameter, and diffusion coefficient.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube