Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Substring Complexity in Sublinear Space (2007.08357v2)

Published 16 Jul 2020 in cs.DS

Abstract: Shannon's entropy is a definitive lower bound for statistical compression. Unfortunately, no such clear measure exists for the compressibility of repetitive strings. Thus, ad hoc measures are employed to estimate the repetitiveness of strings, e.g., the size $z$ of the Lempel-Ziv parse or the number $r$ of equal-letter runs of the Burrows-Wheeler transform. A more recent one is the size $\gamma$ of a smallest string attractor. Let $T$ be a string of length $n$. A string attractor of $T$ is a set of positions of $T$ capturing the occurrences of all the substrings of $T$. Unfortunately, Kempa and Prezza [STOC 2018] showed that computing $\gamma$ is NP-hard. Kociumaka et al. [LATIN 2020] considered a new measure of compressibility that is based on the function $S_T(k)$ counting the number of distinct substrings of length $k$ of $T$, also known as the substring complexity of $T$. This new measure is defined as $\delta= \sup{S_T(k)/k, k\geq 1}$ and lower bounds all the relevant ad hoc measures previously considered. In particular, $\delta\leq \gamma$ always holds and $\delta$ can be computed in $\mathcal{O}(n)$ time using $\Theta(n)$ working space. Kociumaka et al. showed that one can construct an $\mathcal{O}(\delta \log \frac{n}{\delta})$-sized representation of $T$ supporting efficient direct access and efficient pattern matching queries on $T$. Given that for highly compressible strings, $\delta$ is significantly smaller than $n$, it is natural to pose the following question: Can we compute $\delta$ efficiently using sublinear working space? We address this algorithmic challenge by showing the following bounds to compute $\delta$: $\mathcal{O}(\frac{n3\log b}{b2})$ time using $\mathcal{O}(b)$ space, for any $b\in[1,n]$, in the comparison model; or $\tilde{\mathcal{O}}(n2/b)$ time using $\tilde{\mathcal{O}}(b)$ space, for any $b\in[\sqrt{n},n]$, in the word RAM model.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube