Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Transferable Calibration with Lower Bias and Variance in Domain Adaptation (2007.08259v2)

Published 16 Jul 2020 in cs.LG and stat.ML

Abstract: Domain Adaptation (DA) enables transferring a learning machine from a labeled source domain to an unlabeled target one. While remarkable advances have been made, most of the existing DA methods focus on improving the target accuracy at inference. How to estimate the predictive uncertainty of DA models is vital for decision-making in safety-critical scenarios but remains the boundary to explore. In this paper, we delve into the open problem of Calibration in DA, which is extremely challenging due to the coexistence of domain shift and the lack of target labels. We first reveal the dilemma that DA models learn higher accuracy at the expense of well-calibrated probabilities. Driven by this finding, we propose Transferable Calibration (TransCal) to achieve more accurate calibration with lower bias and variance in a unified hyperparameter-free optimization framework. As a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA methods. Its efficacy has been justified both theoretically and empirically.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.