Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Overcomplete order-3 tensor decomposition, blind deconvolution and Gaussian mixture models (2007.08133v2)

Published 16 Jul 2020 in cs.LG and stat.ML

Abstract: We propose a new algorithm for tensor decomposition, based on Jennrich's algorithm, and apply our new algorithmic ideas to blind deconvolution and Gaussian mixture models. Our first contribution is a simple and efficient algorithm to decompose certain symmetric overcomplete order-3 tensors, that is, three dimensional arrays of the form $T = \sum_{i=1}n a_i \otimes a_i \otimes a_i$ where the $a_i$s are not linearly independent.Our algorithm comes with a detailed robustness analysis. Our second contribution builds on top of our tensor decomposition algorithm to expand the family of Gaussian mixture models whose parameters can be estimated efficiently. These ideas are also presented in a more general framework of blind deconvolution that makes them applicable to mixture models of identical but very general distributions, including all centrally symmetric distributions with finite 6th moment.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.