Augmented Sparsifiers for Generalized Hypergraph Cuts with Applications to Decomposable Submodular Function Minimization (2007.08075v2)
Abstract: In recent years, hypergraph generalizations of many graph cut problems have been introduced and analyzed as a way to better explore and understand complex systems and datasets characterized by multiway relationships. Recent work has made use of a generalized hypergraph cut function which for a hypergraph $\mathcal{H} = (V,E)$ can be defined by associating each hyperedge $e \in E$ with a splitting function ${\bf w}_e$, which assigns a penalty to each way of separating the nodes of $e$. When each ${\bf w}_e$ is a submodular cardinality-based splitting function, meaning that ${\bf w}_e(S) = g(|S|)$ for some concave function $g$, previous work has shown that a generalized hypergraph cut problem can be reduced to a directed graph cut problem on an augmented node set. However, existing reduction procedures often result in a dense graph, even when the hypergraph is sparse, which leads to slow runtimes for algorithms that run on the reduced graph. We introduce a new framework of sparsifying hypergraph-to-graph reductions, where a hypergraph cut defined by submodular cardinality-based splitting functions is $(1+\varepsilon)$-approximated by a cut on a directed graph. Our techniques are based on approximating concave functions using piecewise linear curves. For $\varepsilon > 0$ we need at most $O(\varepsilon{-1}|e| \log |e|)$ edges to reduce any hyperedge $e$, which leads to faster runtimes for approximating generalized hypergraph $s$-$t$ cut problems. For the machine learning heuristic of a clique splitting function, our approach requires only $O(|e| \varepsilon{-1/2} \log \log \frac{1}{\varepsilon})$ edges. This sparsification leads to faster approximate min $s$-$t$ graph cut algorithms for certain classes of co-occurrence graphs. Finally, we apply our sparsification techniques to develop approximation algorithms for minimizing sums of cardinality-based submodular functions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.