Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Optimal Coreset for Gaussian Kernel Density Estimation (2007.08031v5)

Published 15 Jul 2020 in cs.DS, cs.CG, and cs.LG

Abstract: Given a point set $P\subset \mathbb{R}d$, the kernel density estimate of $P$ is defined as [ \overline{\mathcal{G}}P(x) = \frac{1}{\left|P\right|}\sum{p\in P}e{-\left\lVert x-p \right\rVert2} ] for any $x\in\mathbb{R}d$. We study how to construct a small subset $Q$ of $P$ such that the kernel density estimate of $P$ is approximated by the kernel density estimate of $Q$. This subset $Q$ is called a coreset. The main technique in this work is constructing a $\pm 1$ coloring on the point set $P$ by discrepancy theory and we leverage Banaszczyk's Theorem. When $d>1$ is a constant, our construction gives a coreset of size $O\left(\frac{1}{\varepsilon}\right)$ as opposed to the best-known result of $O\left(\frac{1}{\varepsilon}\sqrt{\log\frac{1}{\varepsilon}}\right)$. It is the first result to give a breakthrough on the barrier of $\sqrt{\log}$ factor even when $d=2$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.