Papers
Topics
Authors
Recent
2000 character limit reached

GraphCL: Contrastive Self-Supervised Learning of Graph Representations (2007.08025v1)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: We propose Graph Contrastive Learning (GraphCL), a general framework for learning node representations in a self supervised manner. GraphCL learns node embeddings by maximizing the similarity between the representations of two randomly perturbed versions of the intrinsic features and link structure of the same node's local subgraph. We use graph neural networks to produce two representations of the same node and leverage a contrastive learning loss to maximize agreement between them. In both transductive and inductive learning setups, we demonstrate that our approach significantly outperforms the state-of-the-art in unsupervised learning on a number of node classification benchmarks.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.