Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient-based Hyperparameter Optimization Over Long Horizons (2007.07869v2)

Published 15 Jul 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Gradient-based hyperparameter optimization has earned a widespread popularity in the context of few-shot meta-learning, but remains broadly impractical for tasks with long horizons (many gradient steps), due to memory scaling and gradient degradation issues. A common workaround is to learn hyperparameters online, but this introduces greediness which comes with a significant performance drop. We propose forward-mode differentiation with sharing (FDS), a simple and efficient algorithm which tackles memory scaling issues with forward-mode differentiation, and gradient degradation issues by sharing hyperparameters that are contiguous in time. We provide theoretical guarantees about the noise reduction properties of our algorithm, and demonstrate its efficiency empirically by differentiating through $\sim 104$ gradient steps of unrolled optimization. We consider large hyperparameter search ranges on CIFAR-10 where we significantly outperform greedy gradient-based alternatives, while achieving $\times 20$ speedups compared to the state-of-the-art black-box methods. Code is available at: \url{https://github.com/polo5/FDS}

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.