Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Whither Fair Clustering? (2007.07838v1)

Published 8 Jul 2020 in cs.CY, cs.LG, and stat.ML

Abstract: Within the relatively busy area of fair machine learning that has been dominated by classification fairness research, fairness in clustering has started to see some recent attention. In this position paper, we assess the existing work in fair clustering and observe that there are several directions that are yet to be explored, and postulate that the state-of-the-art in fair clustering has been quite parochial in outlook. We posit that widening the normative principles to target for, characterizing shortfalls where the target cannot be achieved fully, and making use of knowledge of downstream processes can significantly widen the scope of research in fair clustering research. At a time when clustering and unsupervised learning are being increasingly used to make and influence decisions that matter significantly to human lives, we believe that widening the ambit of fair clustering is of immense significance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)