Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic MPC with Dynamic Feedback Gain Selection and Discounted Probabilistic Constraints (2007.07134v2)

Published 14 Jul 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law incorporating a dynamic feedback gain to minimise a quadratic cost function subject to a single chance constraint. The feedback gain is selected online and we provide two selection methods based on minimising upper bounds on predicted costs. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and assigning violation probabilities in the far future with vanishingly small weights, this form of constraints allows for an MPC law with guarantees of recursive feasibility without a boundedness assumption on the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition. With dynamic feedback gain selection, the closed loop cost is reduced and conservativeness of Chebyshev's inequality is mitigated. Also, a larger feasible set of initial conditions can be obtained. Numerical simulations are given to show these results.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.