Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials (2007.06939v1)

Published 14 Jul 2020 in eess.SP, cs.SY, and eess.SY

Abstract: This paper presents a novel systematic methodology to obtain new simple and tight approximations, lower bounds, and upper bounds for the Gaussian Q-function, and functions thereof, in the form of a weighted sum of exponential functions. They are based on minimizing the maximum absolute or relative error, resulting in globally uniform error functions with equalized extrema. In particular, we construct sets of equations that describe the behaviour of the targeted error functions and solve them numerically in order to find the optimized sets of coefficients for the sum of exponentials. This also allows for establishing a trade-off between absolute and relative error by controlling weights assigned to the error functions' extrema. We further extend the proposed procedure to derive approximations and bounds for any polynomial of the Q-function, which in turn allows approximating and bounding many functions of the Q-function that meet the Taylor series conditions, and consider the integer powers of the Q-function as a special case. In the numerical results, other known approximations of the same and different forms as well as those obtained directly from quadrature rules are compared with the proposed approximations and bounds to demonstrate that they achieve increasingly better accuracy in terms of the global error, thus requiring significantly lower number of sum terms to achieve the same level of accuracy than any reference approach of the same form.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.