Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials (2007.06939v1)

Published 14 Jul 2020 in eess.SP, cs.SY, and eess.SY

Abstract: This paper presents a novel systematic methodology to obtain new simple and tight approximations, lower bounds, and upper bounds for the Gaussian Q-function, and functions thereof, in the form of a weighted sum of exponential functions. They are based on minimizing the maximum absolute or relative error, resulting in globally uniform error functions with equalized extrema. In particular, we construct sets of equations that describe the behaviour of the targeted error functions and solve them numerically in order to find the optimized sets of coefficients for the sum of exponentials. This also allows for establishing a trade-off between absolute and relative error by controlling weights assigned to the error functions' extrema. We further extend the proposed procedure to derive approximations and bounds for any polynomial of the Q-function, which in turn allows approximating and bounding many functions of the Q-function that meet the Taylor series conditions, and consider the integer powers of the Q-function as a special case. In the numerical results, other known approximations of the same and different forms as well as those obtained directly from quadrature rules are compared with the proposed approximations and bounds to demonstrate that they achieve increasingly better accuracy in terms of the global error, thus requiring significantly lower number of sum terms to achieve the same level of accuracy than any reference approach of the same form.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Islam M. Tanash (6 papers)
  2. Taneli Riihonen (24 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.