Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

360$^\circ$ Depth Estimation from Multiple Fisheye Images with Origami Crown Representation of Icosahedron (2007.06891v1)

Published 14 Jul 2020 in cs.CV and cs.RO

Abstract: In this study, we present a method for all-around depth estimation from multiple omnidirectional images for indoor environments. In particular, we focus on plane-sweeping stereo as the method for depth estimation from the images. We propose a new icosahedron-based representation and ConvNets for omnidirectional images, which we name "CrownConv" because the representation resembles a crown made of origami. CrownConv can be applied to both fisheye images and equirectangular images to extract features. Furthermore, we propose icosahedron-based spherical sweeping for generating the cost volume on an icosahedron from the extracted features. The cost volume is regularized using the three-dimensional CrownConv, and the final depth is obtained by depth regression from the cost volume. Our proposed method is robust to camera alignments by using the extrinsic camera parameters; therefore, it can achieve precise depth estimation even when the camera alignment differs from that in the training dataset. We evaluate the proposed model on synthetic datasets and demonstrate its effectiveness. As our proposed method is computationally efficient, the depth is estimated from four fisheye images in less than a second using a laptop with a GPU. Therefore, it is suitable for real-world robotics applications. Our source code is available at https://github.com/matsuren/crownconv360depth.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.