Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Knowledge Distillation for Multi-task Learning (2007.06889v2)

Published 14 Jul 2020 in cs.CV

Abstract: Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation. Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics (e.g. cross-entropy, Euclidean loss), leading to the imbalance problem in multi-task learning. To address the imbalance problem, we propose a knowledge distillation based method in this work. We first learn a task-specific model for each task. We then learn the multi-task model for minimizing task-specific loss and for producing the same feature with task-specific models. As the task-specific network encodes different features, we introduce small task-specific adaptors to project multi-task features to the task-specific features. In this way, the adaptors align the task-specific feature and the multi-task feature, which enables a balanced parameter sharing across tasks. Extensive experimental results demonstrate that our method can optimize a multi-task learning model in a more balanced way and achieve better overall performance.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.