Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Socially and Contextually Aware Human Motion and Pose Forecasting (2007.06843v1)

Published 14 Jul 2020 in cs.CV

Abstract: Smooth and seamless robot navigation while interacting with humans depends on predicting human movements. Forecasting such human dynamics often involves modeling human trajectories (global motion) or detailed body joint movements (local motion). Prior work typically tackled local and global human movements separately. In this paper, we propose a novel framework to tackle both tasks of human motion (or trajectory) and body skeleton pose forecasting in a unified end-to-end pipeline. To deal with this real-world problem, we consider incorporating both scene and social contexts, as critical clues for this prediction task, into our proposed framework. To this end, we first couple these two tasks by i) encoding their history using a shared Gated Recurrent Unit (GRU) encoder and ii) applying a metric as loss, which measures the source of errors in each task jointly as a single distance. Then, we incorporate the scene context by encoding a spatio-temporal representation of the video data. We also include social clues by generating a joint feature representation from motion and pose of all individuals from the scene using a social pooling layer. Finally, we use a GRU based decoder to forecast both motion and skeleton pose. We demonstrate that our proposed framework achieves a superior performance compared to several baselines on two social datasets.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.