Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Fair Algorithms for Multi-Agent Multi-Armed Bandits (2007.06699v2)

Published 13 Jul 2020 in cs.GT and cs.AI

Abstract: We propose a multi-agent variant of the classical multi-armed bandit problem, in which there are $N$ agents and $K$ arms, and pulling an arm generates a (possibly different) stochastic reward for each agent. Unlike the classical multi-armed bandit problem, the goal is not to learn the "best arm"; indeed, each agent may perceive a different arm to be the best for her personally. Instead, we seek to learn a fair distribution over the arms. Drawing on a long line of research in economics and computer science, we use the Nash social welfare as our notion of fairness. We design multi-agent variants of three classic multi-armed bandit algorithms and show that they achieve sublinear regret, which is now measured in terms of the lost Nash social welfare.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.