Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lessons Learned from the Training of GANs on Artificial Datasets (2007.06418v2)

Published 13 Jul 2020 in cs.LG and stat.ML

Abstract: Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years. However, they are often trained on image datasets with either too few samples or too many classes belonging to different data distributions. Consequently, GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained. Therefore, in order to conduct a thorough study on GANs while obviating unnecessary interferences introduced by the datasets, we train them on artificial datasets where there are infinitely many samples and the real data distributions are simple, high-dimensional and have structured manifolds. Moreover, the generators are designed such that optimal sets of parameters exist. Empirically, we find that under various distance measures, the generator fails to learn such parameters with the GAN training procedure. We also find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width when the model complexity is high enough. Our experimental results demonstrate that a mixture of generators can discover different modes or different classes automatically in an unsupervised setting, which we attribute to the distribution of the generation and discrimination tasks across multiple generators and discriminators. As an example of the generalizability of our conclusions to realistic datasets, we train a mixture of GANs on the CIFAR-10 dataset and our method significantly outperforms the state-of-the-art in terms of popular metrics, i.e., Inception Score (IS) and Fr\'echet Inception Distance (FID).

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.