Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Label Attention Model for ICD Coding from Clinical Text (2007.06351v1)

Published 13 Jul 2020 in cs.CL and cs.LG

Abstract: ICD coding is a process of assigning the International Classification of Disease diagnosis codes to clinical/medical notes documented by health professionals (e.g. clinicians). This process requires significant human resources, and thus is costly and prone to error. To handle the problem, machine learning has been utilized for automatic ICD coding. Previous state-of-the-art models were based on convolutional neural networks, using a single/several fixed window sizes. However, the lengths and interdependence between text fragments related to ICD codes in clinical text vary significantly, leading to the difficulty of deciding what the best window sizes are. In this paper, we propose a new label attention model for automatic ICD coding, which can handle both the various lengths and the interdependence of the ICD code related text fragments. Furthermore, as the majority of ICD codes are not frequently used, leading to the extremely imbalanced data issue, we additionally propose a hierarchical joint learning mechanism extending our label attention model to handle the issue, using the hierarchical relationships among the codes. Our label attention model achieves new state-of-the-art results on three benchmark MIMIC datasets, and the joint learning mechanism helps improve the performances for infrequent codes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.