Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation (2007.06294v2)

Published 13 Jul 2020 in cs.CV, cs.LG, eess.IV, and q-bio.NC

Abstract: For a considerable time, deep convolutional neural networks (DCNNs) have reached human benchmark performance in object recognition. On that account, computational neuroscience and the field of machine learning have started to attribute numerous similarities and differences to artificial and biological vision. This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks in a classification learning paradigm on an ImageNet data set. For this purpose, human participants (n = 65) competed in an online experiment against different feedforward DCNNs. The designed approach based on a typical learning process of seven different monkey categories included a training and validation phase with natural examples, as well as a testing phase with novel, unexperienced shape and color manipulations. Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations. Furthermore, a precise examination of behavioral patterns highlights these findings by revealing independent classification errors between the groups. The obtained results show that humans contrast strongly with artificial feedforward architectures when it comes to visual core object recognition of manipulated images. In general, these findings are in line with a growing body of literature, that hints towards recurrence as a crucial factor for adequate generalization abilities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.