Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Functions with average smoothness: structure, algorithms, and learning (2007.06283v2)

Published 13 Jul 2020 in math.ST, cs.LG, math.PR, and stat.TH

Abstract: We initiate a program of average smoothness analysis for efficiently learning real-valued functions on metric spaces. Rather than using the Lipschitz constant as the regularizer, we define a local slope at each point and gauge the function complexity as the average of these values. Since the mean can be dramatically smaller than the maximum, this complexity measure can yield considerably sharper generalization bounds -- assuming that these admit a refinement where the Lipschitz constant is replaced by our average of local slopes. Our first major contribution is to obtain just such distribution-sensitive bounds. This required overcoming a number of technical challenges, perhaps the most formidable of which was bounding the {\em empirical} covering numbers, which can be much worse-behaved than the ambient ones. Our combinatorial results are accompanied by efficient algorithms for smoothing the labels of the random sample, as well as guarantees that the extension from the sample to the whole space will continue to be, with high probability, smooth on average. Along the way we discover a surprisingly rich combinatorial and analytic structure in the function class we define.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.