Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functions with average smoothness: structure, algorithms, and learning (2007.06283v2)

Published 13 Jul 2020 in math.ST, cs.LG, math.PR, and stat.TH

Abstract: We initiate a program of average smoothness analysis for efficiently learning real-valued functions on metric spaces. Rather than using the Lipschitz constant as the regularizer, we define a local slope at each point and gauge the function complexity as the average of these values. Since the mean can be dramatically smaller than the maximum, this complexity measure can yield considerably sharper generalization bounds -- assuming that these admit a refinement where the Lipschitz constant is replaced by our average of local slopes. Our first major contribution is to obtain just such distribution-sensitive bounds. This required overcoming a number of technical challenges, perhaps the most formidable of which was bounding the {\em empirical} covering numbers, which can be much worse-behaved than the ambient ones. Our combinatorial results are accompanied by efficient algorithms for smoothing the labels of the random sample, as well as guarantees that the extension from the sample to the whole space will continue to be, with high probability, smooth on average. Along the way we discover a surprisingly rich combinatorial and analytic structure in the function class we define.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yair Ashlagi (2 papers)
  2. Lee-Ad Gottlieb (28 papers)
  3. Aryeh Kontorovich (65 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.