Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Planning in Large MDPs with Weak Linear Function Approximation (2007.06184v1)

Published 13 Jul 2020 in cs.LG and stat.ML

Abstract: Large-scale Markov decision processes (MDPs) require planning algorithms with runtime independent of the number of states of the MDP. We consider the planning problem in MDPs using linear value function approximation with only weak requirements: low approximation error for the optimal value function, and a small set of "core" states whose features span those of other states. In particular, we make no assumptions about the representability of policies or value functions of non-optimal policies. Our algorithm produces almost-optimal actions for any state using a generative oracle (simulator) for the MDP, while its computation time scales polynomially with the number of features, core states, and actions and the effective horizon.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.