Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Asymptotic Privacy Loss due to Time Series Matching of Dependent Users (2007.06119v1)

Published 12 Jul 2020 in cs.CR

Abstract: The Internet of Things (IoT) promises to improve user utility by tuning applications to user behavior, but revealing the characteristics of a user's behavior presents a significant privacy risk. Our previous work has established the challenging requirements for anonymization to protect users' privacy in a Bayesian setting in which we assume a powerful adversary who has perfect knowledge of the prior distribution for each user's behavior. However, even sophisticated adversaries do not often have such perfect knowledge; hence, in this paper, we turn our attention to an adversary who must learn user behavior from past data traces of limited length. We also assume there exists dependency between data traces of different users, and the data points of each user are drawn from a normal distribution. Results on the lengths of training sequences and data sequences that result in a loss of user privacy are presented.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.