Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics (2007.05824v2)

Published 11 Jul 2020 in cs.LG and stat.ML

Abstract: We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error. Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence. This potentially makes it difficult to directly deal with finite width network; especially in the neural tangent kernel regime, we cannot reveal favorable properties of neural networks beyond kernel methods. To realize more natural analysis, we consider a completely different approach in which we formulate the parameter training as a transportation map estimation and show its global convergence via the theory of the infinite dimensional Langevin dynamics. This enables us to analyze narrow and wide networks in a unifying manner. Moreover, we give generalization gap and excess risk bounds for the solution obtained by the dynamics. The excess risk bound achieves the so-called fast learning rate. In particular, we show an exponential convergence for a classification problem and a minimax optimal rate for a regression problem.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)