Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ManiGen: A Manifold Aided Black-box Generator of Adversarial Examples (2007.05817v1)

Published 11 Jul 2020 in cs.CR, cs.LG, and stat.ML

Abstract: Machine learning models, especially neural network (NN) classifiers, have acceptable performance and accuracy that leads to their wide adoption in different aspects of our daily lives. The underlying assumption is that these models are generated and used in attack free scenarios. However, it has been shown that neural network based classifiers are vulnerable to adversarial examples. Adversarial examples are inputs with special perturbations that are ignored by human eyes while can mislead NN classifiers. Most of the existing methods for generating such perturbations require a certain level of knowledge about the target classifier, which makes them not very practical. For example, some generators require knowledge of pre-softmax logits while others utilize prediction scores. In this paper, we design a practical black-box adversarial example generator, dubbed ManiGen. ManiGen does not require any knowledge of the inner state of the target classifier. It generates adversarial examples by searching along the manifold, which is a concise representation of input data. Through extensive set of experiments on different datasets, we show that (1) adversarial examples generated by ManiGen can mislead standalone classifiers by being as successful as the state-of-the-art white-box generator, Carlini, and (2) adversarial examples generated by ManiGen can more effectively attack classifiers with state-of-the-art defenses.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.