Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Computational Separation between Private Learning and Online Learning (2007.05665v1)

Published 11 Jul 2020 in cs.LG and stat.ML

Abstract: A recent line of work has shown a qualitative equivalence between differentially private PAC learning and online learning: A concept class is privately learnable if and only if it is online learnable with a finite mistake bound. However, both directions of this equivalence incur significant losses in both sample and computational efficiency. Studying a special case of this connection, Gonen, Hazan, and Moran (NeurIPS 2019) showed that uniform or highly sample-efficient pure-private learners can be time-efficiently compiled into online learners. We show that, assuming the existence of one-way functions, such an efficient conversion is impossible even for general pure-private learners with polynomial sample complexity. This resolves a question of Neel, Roth, and Wu (FOCS 2019).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube