Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Computational Separation between Private Learning and Online Learning (2007.05665v1)

Published 11 Jul 2020 in cs.LG and stat.ML

Abstract: A recent line of work has shown a qualitative equivalence between differentially private PAC learning and online learning: A concept class is privately learnable if and only if it is online learnable with a finite mistake bound. However, both directions of this equivalence incur significant losses in both sample and computational efficiency. Studying a special case of this connection, Gonen, Hazan, and Moran (NeurIPS 2019) showed that uniform or highly sample-efficient pure-private learners can be time-efficiently compiled into online learners. We show that, assuming the existence of one-way functions, such an efficient conversion is impossible even for general pure-private learners with polynomial sample complexity. This resolves a question of Neel, Roth, and Wu (FOCS 2019).

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)